first commit

This commit is contained in:
2025-08-17 15:18:07 +07:00
commit 85d28150be
7 changed files with 145 additions and 0 deletions

Binary file not shown.

Binary file not shown.

Binary file not shown.

36
generate.py Normal file
View File

@@ -0,0 +1,36 @@
import random
class Dot:
def __init__(self, x: float, y: float) -> None:
self.x = x
self.y = y
self.classification = float(((x**2 + y**2)**0.5)>=0.5)
def get_tup(self) -> tuple:
return (self.x, self.y, self.classification)
def __str__(self) -> str:
return f"({self.x}, {self.y})"
def __repr__(self) -> str:
return f"({self.x}, {self.y}, {self.classification})"
class Dataset:
def __init__(self, train: list[Dot], test: list[Dot]) -> None:
self.train = train
self.test = test
def __str__(self) -> str:
return f"Train: {str(self.train)}\nTest: {str(self.test)}"
def __repr__(self) -> str:
return f"Train: {self.train}\nTest: {self.test}"
def generate_data() -> Dot:
return Dot(random.uniform(-1.0, 1.0), random.uniform(-1.0, 1.0))
def generate_dataset(N = 1000) -> Dataset:
return Dataset([generate_data() for i in range(N//5*4)], [generate_data() for i in range(N//5)])
if __name__ == "__main__":
data = generate_dataset(10)
print(data)

19
main.py Normal file
View File

@@ -0,0 +1,19 @@
import generate
import visual
import neuro_defs
dataset = generate.generate_dataset(10_000)
# Создаём и обучаем сеть
nn = neuro_defs.SimpleNN()
nn.train(dataset.train, epochs=10)
# Проверяем на новой точке
for dot in dataset.test[:10]:
print(nn.forward(dot.x, dot.y), dot.__repr__())
# visual.plot_dataset(dataset)
# visual.plt_show()

49
neuro_defs.py Normal file
View File

@@ -0,0 +1,49 @@
import math
import random
def sigmoid(x):
return 1 / (1 + math.exp(-x))
def sigmoid_derivative(x):
s = sigmoid(x)
return s * (1 - s)
class SimpleNN:
def __init__(self):
# инициализация весов случайными числами
self.w1 = random.uniform(-1, 1)
self.w2 = random.uniform(-1, 1)
self.b = random.uniform(-1, 1) # смещение
self.w_out = random.uniform(-1, 1)
self.b_out = random.uniform(-1, 1)
self.lr = 0.001 # скорость обучения
def forward(self, x1, x2):
# прямой проход
self.z1 = self.w1 * x1 + self.w2 * x2 + self.b
self.a1 = sigmoid(self.z1) # активация скрытого слоя
self.z2 = self.w_out * self.a1 + self.b_out
self.a2 = sigmoid(self.z2) # выход сети
return self.a2
def backward(self, x1, x2, y):
# вычисляем ошибку
error = self.a2 - y # dL/da2
# производные для выходного слоя
d_out = error * sigmoid_derivative(self.z2)
self.w_out -= self.lr * d_out * self.a1
self.b_out -= self.lr * d_out
# производные для скрытого слоя
d_hidden = d_out * self.w_out * sigmoid_derivative(self.z1)
self.w1 -= self.lr * d_hidden * x1
self.w2 -= self.lr * d_hidden * x2
self.b -= self.lr * d_hidden
def train(self, data, epochs=1000):
for _ in range(epochs):
for x1, x2, y in [i.get_tup() for i in data]:
self.forward(x1, x2)
self.backward(x1, x2, y)

41
visual.py Normal file
View File

@@ -0,0 +1,41 @@
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import numpy as np
def plot_dataset(dataset):
x0 = [dot.x for dot in dataset.train if not dot.classification]
y0 = [dot.y for dot in dataset.train if not dot.classification]
x1 = [dot.x for dot in dataset.train if dot.classification]
y1 = [dot.y for dot in dataset.train if dot.classification]
plt.scatter(x0, y0, color='green', label='Class 0')
plt.scatter(x1, y1, color='red', label='Class 1')
def plot_decision_surface(network, resolution=0.02):
x_min, x_max = -1, 1
y_min, y_max = -1, 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, resolution),
np.arange(y_min, y_max, resolution))
# прогоняем сетку через сеть
Z = np.array([network.predict([x, y]) for x, y in zip(xx.ravel(), yy.ravel())])
Z = Z.reshape(xx.shape)
# закрашиваем фон по вероятности
plt.contourf(xx, yy, Z, levels=50, cmap='RdYlGn', alpha=0.3)
def plot_all(dataset, network):
plt.figure(figsize=(6,6))
plot_decision_surface(network)
plot_dataset(dataset)
plt.xlim(-1, 1)
plt.ylim(-1, 1)
plt.legend()
def plt_show():
plt.show()
if __name__ == "__main__":
pass