Производительность больше вам не помешает

This commit is contained in:
2025-08-18 23:09:49 +07:00
parent a3337ef60c
commit f93b5a383f
5 changed files with 178 additions and 30 deletions

View File

@@ -133,6 +133,9 @@ def backward(loss: Node):
for node in reversed(topo): for node in reversed(topo):
node._backward() node._backward()
def update_weights(weight: Node, lr: float):
return Node(float(weight) - lr * weight.grad)
if __name__ == "__main__": if __name__ == "__main__":
x = Node(2, label="x") x = Node(2, label="x")

View File

@@ -1,4 +1,6 @@
import copy
import random import random
from auto_diff import auto_diff
class DataSet: class DataSet:
def __init__(self, func, N=1000) -> None: def __init__(self, func, N=1000) -> None:
@@ -7,12 +9,97 @@ class DataSet:
self.test = [] self.test = []
self.test_answs = [] self.test_answs = []
for i in range(N//5*4): def gen_data():
x = random.uniform(1, 9) x1 = random.uniform(-1, 1)
self.train.append(x) x2 = random.uniform(-1, 1)
self.train_answs.append(func(x)) y = func(x1, x2)
return (x1, x2), y
for i in range(N):
(x1, x2), y = gen_data()
self.train.append((x1, x2))
self.train_answs.append(y)
for i in range(N//5): for i in range(N//5):
x = random.uniform(1, 9) (x1, x2), y = gen_data()
self.test.append(x) self.test.append((x1, x2))
self.test_answs.append(func(x)) self.test_answs.append(y)
def __repr__(self):
return f"test: {self.test}\nansws: {self.test_answs}"
class Neuron:
def __init__(self, weights_num: int) -> None:
self.weights = [auto_diff.Node(random.uniform(-1, 1)) for _ in range(weights_num)]
self.b = auto_diff.Node(random.uniform(-1, 1))
def __repr__(self, debug: bool = False) -> str:
if not debug:
return f"<weights = {len(self.weights)} b = {float(self.b)}>"
else:
return f"<weights = {self.weights} b = {float(self.b)}>"
def update_weights(self, lr):
for i in range(len(self.weights)):
self.weights[i] = auto_diff.update_weights(self.weights[i], lr)
self.b = auto_diff.update_weights(self.b, lr)
def my_sum(array: list) -> int:
result = 0
for i in array:
result += i
return result
class NeuronNetwork:
def __init__(self, neurons_num: int, layers_num: int, inputs_num: int, outputs_num: int = 1) -> None:
'''
neurons_num: количество нейронов на каждом слое\n
layers_num: количество слоёв\n
inputs_num: количество входных нейронов\n
outputs_num: количество выходных нейронов (по умолчанию 1)\n
'''
neurons = []
for layer in range(layers_num+1):
neurons.append([])
if layer == layers_num:
for neuron in range(outputs_num):
neurons[layer].append(Neuron(neurons_num))
continue
for neuron in range(neurons_num):
if layer == 0:
neurons[layer].append(Neuron(inputs_num))
else:
neurons[layer].append(Neuron(neurons_num))
self.neurons = neurons
def forward(self, func, *args, func_out=None):
if func_out is None:
func_out = func
prev_out = [*args]
out = []
for layer in self.neurons[:-1]:
for neuron in layer:
out.append(func(my_sum([prev_out[i]*neuron.weights[i] for i in range(len(prev_out))]) + neuron.b))
prev_out = copy.deepcopy(out)
out = []
for neuron in self.neurons[-1]:
out.append(func_out(my_sum([prev_out[i]*neuron.weights[i] for i in range(len(prev_out))]) + neuron.b))
return out[0]
def update_weights(self, lr=0.1):
for i in range(len(self.neurons)):
for j in range(len(self.neurons[i])):
self.neurons[i][j].update_weights(lr)
if __name__ == "__main__":
print(NeuronNetwork(4, 4, 2).neurons)

View File

@@ -1,7 +1,7 @@
import classes import classes
def generate_dataset(N=1000): def generate_dataset(N=100):
return classes.DataSet(lambda x: 1*x-12, N) return classes.DataSet(lambda x, y: float(((x**2 + y**2)**0.5)>=0.5), N)
if __name__ == "__main__": if __name__ == "__main__":
print([[i.train, i.train_answs] for i in [generate_dataset(10)]]) print(generate_dataset(10))

10
main.py
View File

@@ -9,12 +9,16 @@ dataset = generate.generate_dataset(100)
# Создаём и обучаем сеть # Создаём и обучаем сеть
nn = neuro_defs.SimpleNN() nn = neuro_defs.SimpleNN()
nn.train(dataset.train, dataset.train_answs, epochs=100) epoch = 100
for i in range(epoch):
nn.train(dataset.train, dataset.train_answs, epochs=1)
if epoch % 10 == 0:
print("*"*(i//10) + "-"*((epoch-i)//10))
# Проверяем на новой точке # Проверяем на новой точке
for dot in range(len(dataset.test)): for dot in range(len(dataset.test)):
print(nn.forward(dataset.test[dot]).val, dataset.test_answs[dot]) print(nn.forward(*dataset.test[dot]).val, dataset.test_answs[dot])
print() print()
print(nn.w_out.val, nn.b_out.val)
# visual.plot_dataset(dataset) # visual.plot_dataset(dataset)
# visual.plt_show() # visual.plt_show()

View File

@@ -1,32 +1,86 @@
import math
import random
from auto_diff import auto_diff
def func_active(x): from auto_diff import auto_diff
return import classes
def sigmoid(x: auto_diff.Node):
return 1 / (1 + (-x).exp())
def tanh(x: auto_diff.Node):
return (x.exp() - (-x).exp()) / (x.exp() + (-x).exp())
class SimpleNN: class SimpleNN:
def __init__(self): def __init__(self):
self.w_out = auto_diff.Node(random.uniform(-1, 1), label="w_out") #111 - 1 слой, 1 нейрон, 1 вес
self.b_out = auto_diff.Node(random.uniform(-1, 1), label="b_out") # self.w111 = auto_diff.Node(random.uniform(-1, 1))
self.lr = 0.02 # скорость обучения # self.w112 = auto_diff.Node(random.uniform(-1, 1))
# self.b11 = auto_diff.Node(random.uniform(-1, 1))
def forward(self, x): # self.w121 = auto_diff.Node(random.uniform(-1, 1))
# self.w122 = auto_diff.Node(random.uniform(-1, 1))
# self.b12 = auto_diff.Node(random.uniform(-1, 1))
# self.w131 = auto_diff.Node(random.uniform(-1, 1))
# self.w132 = auto_diff.Node(random.uniform(-1, 1))
# self.b13 = auto_diff.Node(random.uniform(-1, 1))
# self.w141 = auto_diff.Node(random.uniform(-1, 1))
# self.w142 = auto_diff.Node(random.uniform(-1, 1))
# self.b14 = auto_diff.Node(random.uniform(-1, 1))
# self.w211 = auto_diff.Node(random.uniform(-1, 1))
# self.w212 = auto_diff.Node(random.uniform(-1, 1))
# self.w213 = auto_diff.Node(random.uniform(-1, 1))
# self.w214 = auto_diff.Node(random.uniform(-1, 1))
# self.b21 = auto_diff.Node(random.uniform(-1, 1))
# self.w221 = auto_diff.Node(random.uniform(-1, 1))
# self.w222 = auto_diff.Node(random.uniform(-1, 1))
# self.w223 = auto_diff.Node(random.uniform(-1, 1))
# self.w224 = auto_diff.Node(random.uniform(-1, 1))
# self.b22 = auto_diff.Node(random.uniform(-1, 1))
# self.w1_out = auto_diff.Node(random.uniform(-1, 1))
# self.w2_out = auto_diff.Node(random.uniform(-1, 1))
# self.b_out = auto_diff.Node(random.uniform(-1, 1))
self.network = classes.NeuronNetwork(4, 2, 2)
self.lr = 0.1 # скорость обучения
def forward(self, x1, x2):
# прямой проход # прямой проход
self.z1 = self.w_out * x + self.b_out
return self.z1
def backward(self, x, y): # #скрытые слои
# self.h11 = tanh(self.w111*x1 + self.w112*x2 + self.b11)
# self.h12 = tanh(self.w121*x1 + self.w122*x2 + self.b12)
# self.h13 = tanh(self.w131*x1 + self.w132*x2 + self.b13)
# self.h14 = tanh(self.w141*x1 + self.w142*x2 + self.b14)
# self.h21 = tanh(self.w211*self.h11 + self.w212*self.h12 + self.w213*self.h13 + self.w214*self.h14 + self.b21)
# self.h22 = tanh(self.w221*self.h11 + self.w222*self.h12 + self.w223*self.h13 + self.w224*self.h14 + self.b22)
# #выходной слой
# self.a1 = sigmoid(self.w1_out*self.h21 + self.w2_out*self.h22 + self.b_out)
self.a1 = self.network.forward(sigmoid, x1, x2)
return self.a1
def backward(self, y):
# вычисляем ошибку # вычисляем ошибку
error = (self.z1 - y)**2 # dL/da2 error = (self.a1 - y)**2 # dL/da2
auto_diff.backward(error) auto_diff.backward(error)
self.w_out = auto_diff.Node(float(self.w_out) - self.lr * self.w_out.grad, label="w_out")
self.b_out = auto_diff.Node(float(self.b_out) - self.lr * self.b_out.grad, label="b_out") self.network.update_weights(self.lr)
def train(self, dataset, answs, epochs=1000): def train(self, dataset, answs, epochs=1000):
for _ in range(epochs): for _ in range(epochs):
for i in range(len(dataset)): for i in range(len(dataset)):
self.forward(dataset[i]) self.forward(*dataset[i])
self.backward(dataset[i], answs[i]) self.backward(answs[i])