Files
training-primitive-neural-n…/classes.py

105 lines
2.8 KiB
Python

import copy
import random
from auto_diff import auto_diff
class DataSet:
def __init__(self, func, N=1000) -> None:
self.train = []
self.train_answs = []
self.test = []
self.test_answs = []
def gen_data():
x1 = random.uniform(-1, 1)
x2 = random.uniform(-1, 1)
y = func(x1, x2)
return (x1, x2), y
for i in range(N):
(x1, x2), y = gen_data()
self.train.append((x1, x2))
self.train_answs.append(y)
for i in range(N//5):
(x1, x2), y = gen_data()
self.test.append((x1, x2))
self.test_answs.append(y)
def __repr__(self):
return f"test: {self.test}\nansws: {self.test_answs}"
class Neuron:
def __init__(self, weights_num: int) -> None:
self.weights = [auto_diff.Node(random.uniform(-1, 1)) for _ in range(weights_num)]
self.b = auto_diff.Node(random.uniform(-1, 1))
def __repr__(self, debug: bool = False) -> str:
if not debug:
return f"<weights = {len(self.weights)} b = {float(self.b)}>"
else:
return f"<weights = {self.weights} b = {float(self.b)}>"
def update_weights(self, lr):
for i in range(len(self.weights)):
self.weights[i] = auto_diff.update_weights(self.weights[i], lr)
self.b = auto_diff.update_weights(self.b, lr)
def my_sum(array: list) -> int:
result = 0
for i in array:
result += i
return result
class NeuronNetwork:
def __init__(self, neurons_num: int, layers_num: int, inputs_num: int, outputs_num: int = 1) -> None:
'''
neurons_num: количество нейронов на каждом слое\n
layers_num: количество слоёв\n
inputs_num: количество входных нейронов\n
outputs_num: количество выходных нейронов (по умолчанию 1)\n
'''
neurons = []
for layer in range(layers_num+1):
neurons.append([])
if layer == layers_num:
for neuron in range(outputs_num):
neurons[layer].append(Neuron(neurons_num))
continue
for neuron in range(neurons_num):
if layer == 0:
neurons[layer].append(Neuron(inputs_num))
else:
neurons[layer].append(Neuron(neurons_num))
self.neurons = neurons
def forward(self, func, *args, func_out=None):
if func_out is None:
func_out = func
prev_out = [*args]
out = []
for layer in self.neurons[:-1]:
for neuron in layer:
out.append(func(my_sum([prev_out[i]*neuron.weights[i] for i in range(len(prev_out))]) + neuron.b))
prev_out = copy.deepcopy(out)
out = []
for neuron in self.neurons[-1]:
out.append(func_out(my_sum([prev_out[i]*neuron.weights[i] for i in range(len(prev_out))]) + neuron.b))
return out[0]
def update_weights(self, lr=0.1):
for i in range(len(self.neurons)):
for j in range(len(self.neurons[i])):
self.neurons[i][j].update_weights(lr)
if __name__ == "__main__":
print(NeuronNetwork(4, 4, 2).neurons)