Files
training-primitive-neural-n…/neuro_defs.py

33 lines
918 B
Python

import math
import random
from auto_diff import auto_diff
def func_active(x):
return
class SimpleNN:
def __init__(self):
self.w_out = auto_diff.Node(random.uniform(-1, 1), label="w_out")
self.b_out = auto_diff.Node(random.uniform(-1, 1), label="b_out")
self.lr = 0.02 # скорость обучения
def forward(self, x):
# прямой проход
self.z1 = self.w_out * x + self.b_out
return self.z1
def backward(self, x, y):
# вычисляем ошибку
error = (self.z1 - y)**2 # dL/da2
auto_diff.backward(error)
self.w_out = auto_diff.Node(float(self.w_out) - self.lr * self.w_out.grad, label="w_out")
self.b_out = auto_diff.Node(float(self.b_out) - self.lr * self.b_out.grad, label="b_out")
def train(self, dataset, answs, epochs=1000):
for _ in range(epochs):
for i in range(len(dataset)):
self.forward(dataset[i])
self.backward(dataset[i], answs[i])